If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144x^2+4x-3=0
a = 144; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·144·(-3)
Δ = 1744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1744}=\sqrt{16*109}=\sqrt{16}*\sqrt{109}=4\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{109}}{2*144}=\frac{-4-4\sqrt{109}}{288} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{109}}{2*144}=\frac{-4+4\sqrt{109}}{288} $
| 5-(3x-8)=10 | | 5a17=47 | | 4x^2+x/9-1/12=0 | | 0.6x+1.2=-2.1(-0.9x)-2.1 | | 7a/8=5 | | 2/7x-11/20=-5/7x-4/5 | | t-80=-44 | | 9(s−1)=27 | | 2/5x-11/20=-5/7x-4/5 | | -6+4z+8=3+5z | | u=-7^2 | | 1/4+f=5 | | 259=8-u | | 6(y)+4=4 | | (7+x)/4=30 | | 6x+27=63 | | -5-3x=-2x-1+4 | | 6x+27=81 | | n+2=2=7n | | 2x=6x-14 | | 9-8x^2=(-503) | | 6x-2=10-2x | | 20+c+5=-18 | | 7-3x*2=25 | | 5/5x=5/14 | | x/4+x/5=5/4 | | 3^z=243 | | 163=121-y | | 3(6y-8)-y=-3(y-2) | | 12-2(x-3)=-12 | | -3(6y-8)-y=-3y(y-2) | | x=(x+2)²-4²+(-2x)²-(5x+2)(x-5) |